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ABSTRACT

This researchinvolvesanexaminationof techniquesfor solvingscheduling

problemsin long-durationspacemissions. Themissiontimeline is brokenup into

severaltime segments,which are thenscheduledincrementally. Threemethodsare

presentedfor identifying the activitiesthat are to beattemptedwithin thesesegments.

The first methodis a mathematicalmodel, which is presentedprimarily to illustrate

the structureof the temporaldecompositionproblem. Sincethemathematicalmodel

is bound to becomputationallyprohibitive for realisticproblems,two heuristic

assignmentproceduresarealsopresented. Thefirst heuristicmethodis basedon

dispatchingrules for activity selection,andthe secondheuristicassignsperformances

of a modelevenlyover timelinesegments.Theseheuristicsare testedusinga sample

SpaceStationmissionanda Spacelabmission. Theresultsare comparedwith those

obtainedby schedulingthe missionswithout anyproblemdecomposition. The

applicability of this approachto large-scalemissionschedulingproblemsis also

discussed.
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CHAPTER I

INTRODUCTION

Scheduling is the assignment of limited resources over time to perform a set of

tasks (Baker, 1974). Scheduling problems arise naturally in many systems and are of

immense practical significance. Even many "simple" scheduling problems, however,

have been shown to belong to the hardest class of mathematical problems, known as

the "NP-hard" class (Ullman, 1976 and Garey and Johnson, 1979).

Space mission scheduling problems typically involve a multitude of activities.

Activities require multiple resources and are restricted by several types of constraints

which should be satisfied simultaneously. Adding to this difficulty is the inherent

(stochastic) nature of the domain to defy predictions. In long-term planning

problems, many constraints cannot be predicted accurately. Space Station scheduling

problems, in particular, present even greater complexity due to the length of the

missions involved. A natural way to handle this difficulty is to schedule in an

incremental fashion.

Several compelling reasons exist for scheduling long missions in an

incremental (segmented) fashion. The size of the planning problems may make them

computationally intractable. The scheduling difficulty would be compounded due to

the large numbers of activities and constraints involved in a long mission. For long

missions, the likelihood of rescheduling due to unforeseen developments increases



significantly. Suchreschedulingis accomplishedmore efficiently whenplanninghas

beendone in a segmentedmanner. Furthermore,missionssuchasthoseof the Space

Stationcanbe divided into natural incrementsdefinedby thearrivals of shuttlesto the

station.

The capabilityto decomposea missiontimeline into segments

("macrowindows") is availablein the ExperimentSchedulingProgram(ESP)usedat

NASA's Marshall SpaceFlight Center. Sincethere is generallyno needfor

performing temporaldecompositionin Spacelabmissionplanning,the macrowindows

capability is not typically usedfor this purpose. However, in anticipatedlong-

durationmissions,segmentedschedulingwill benecessary.Therefore,a study of

temporaldecompositionin spacemissionschedulingproblemsis indicated.

The aim of this researchis to investigatemeansfor effectivelyperforming

segmentedscheduling. Intelligentmeansof allocatingactivitiesto different mission

incrementshavebeenstudied. The candidatesolutiontechniquesdevelopedhavebeen

evaluatedon somesimple, but realisticproblems. The result of theexperimental

work will hopefullyprovideuseful information regardingthebenefitsof segmented

scheduling,andregardingpromisingmeansof carrying out suchscheduling.

ChapterII presentssomegeneralcharacteristicsand constraintsof space

missionschedulingproblems,includingsolutionapproachesused,followed by a

review of literature relatingto segmentedscheduling. In ChapterIII, a mathematical

model for assigningactivitiesto missionincrementsis presented,primarily in order to
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illustratethe structureof the temporal decomposition problem. Since the

mathematical model is computationally intractable for realistic problems, Chapter IV

deals with heuristic assignment procedures. The first heuristic method is a loading

algorithm based on dispatching rules for activity selection. The second heuristic

assigns model performances evenly over time segments. In Chapter V, experimental

results are given for sample Spacelab and Space Station missions, followed by a

discussion of the performance of the loading algorithms. The applicability of the

proposed approaches to large-scale mission scheduling problems is also discussed. In

Chapter VI, some suggestions are given for future research on temporal

decomposition of space missions. Conclusions are presented in Chapter VII.
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CHAPTER II

LITERATURE REVIEW

Space Mission Scheduling Problems

The scientific and operational environments are different for various space

missions. Consequently, the scheduling objectives and solution techniques used tend

to be unique. However, there are some similarities among the different types of

space mission scheduling problems, and in the type of constraints that restrict these

problems (time windows, for instance). Bullington and Jaap (1992) provide a

comparison of mission scheduling and production scheduling in terms of the

scheduling environment, objectives and solution methods.

Characteristics

Space mission scheduling problems are static problems in that the entire set of

tasks, along with the constraints, are generally known in advance. The tasks to be

scheduled are called "models" or activities. A model consists of several "steps" or

operations which are to be done in a required order. A model may have to be

replicated several times; these replications are called "performances." No two steps

(or performances) of the same model should be active simultaneously.

Mission scheduling problems are subject to three broad types of constraints,

namely resource constraints, precedence constraints, and temporal constraints, which
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placea restrictionon whenan activity canbeexecuted. An obviousway of

enhancingschedulequality is to increasethe numberof activitiesthat areperformed

in parallel, while simultaneouslysatisfyingtheseconstraints.

Whenmore demandsareplacedon theresourcesthancanbeallocated,the

resultingproblemsare referredto as "over-subscribed"schedulingproblems. In

missionscheduling,both the numberof modelsandthe numberof performancesof

certain modelsare over-subscribed.The latter enablesprioritization by providing a

high selectionprobability for suchmodels. However, the numberof model

performancesactuallyscheduledmust not exceedthe specifiedmaximum.

In productionscheduling,deadlinesaregenerallyconsideredrelaxable,even as

they areconstraintsplacedon ajob's due date. Minimizing job tardinessis a

commonobjective. In missionscheduling,the preference(soft) constraintsare often

the only relaxableconstraints(SmithandPathak,1992). However, theseshouldbe

satisfiedasmuchaspossiblesinceschedulequality dependson the degreeof

fulfillment of both hard andsoft constraints.

The optimizationcriteria can influencethe schedulingcomplexitysignificantly.

For instance,in single-machinescheduling,optimizing for the flow-time criterion is

polynomial, while optimizing for the tardinesscriterion is NP-hard. Mission

schedulingproblemsaremulti-criteria optimizationproblems;the schedulinggoalsare

oftenconflicting, andmay changewith time. Two commonobjectivesare to

maximizescientific returnand resourceutilization. Scientific returncanbe



maximizedby increasingthe numberof modelsscheduled,andby schedulingasmany

high priority (critical) modelsaspossible(Gaspin,1989).

Whena solutionthat meetsall constraintsand objectivesdoesnot exist, it is

better to achieveonethat providesthebestoverall compromise(Smith andPathak,

1992). To accomplishthis, the schedulingprocessmusthavelow computational

requirements,thusenablingthegenerationof many trial schedules.The schedulehas

to beperiodically refinedto overcomethe effectsof variousdynamicfactors suchas

"targetsof opportunity" andunexpectedresourcebreakdowns. Schedulerepair and

reschedulingtechniquesareemployedto maintainand, if possible,improve schedule

quality, in suchcircumstances.

The complexityof missionschedulingproblems, thus, is dueto the number

andtypesof constraints,optimizationcriteria andstochasticity. Furthermore,the

schedulingdifficulty in a spacestationis compoundedby its long missionduration,

which typically leadsto a significantincreasein thenumberof activitiesto be

scheduled. A space station's mission duration is expected to be more than a decade

(Goldin, 1993). For such missions, the computational overheads placed on the

scheduler would be extremely high if scheduling is done in a non-decomposed

fashion. This may, thus, force the use of some type of temporal decomposition, or

segmented scheduling.
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Constraints and Requirements

The various constraints and requirements specified by models are outlined in

this section (Mission Planning Division, 1993 and Stacy and Jaap, 1988).

Temporal Constraints

Performance time windows define the time frames within which the

performances of a model can be executed. Each window specifies a start time, an

end time, and the maximum number of performances that can be scheduled within the

time frame. A model may indicate a preference to be scheduled at certain intervals

within its time window. Time windows may overlap or be intermittent. Models

(steps) cannot be performed outside these windows. Opportunity windows arise due

to a celestial or terrestrial target and/or attitude of the spacecraft. Macrowindows are

user-specified time windows.

Performance duration is the required operation time of one performance of a

model. Step duration is the operation time of a step, and defines the required period

of usage for any resource, crew, target and/or attitude specified by the step.

Performance separation time is the time delay between adjacent performances of a

model.

model.

a maximum which must not be violated.

Likewise, step delay is the time lag between a step and the previous step of a

The delays, step durations and time windows are specified as a minimum and

The actual performance duration of a model



(the sumof the actualstepdurations and step delays) must not exceed the stated

maximum duration.

Scenarios are alternate orderings of the steps of a model. The production

scheduling equivalent is the existence of alternate routes to produce certain jobs. A

scenario consists of a list of steps, their order of execution, a priority rating, and a

selection strategy. Certain steps may be repeated in a scenario while certain others

may not be included. A selection strategy defines the conditions under which the

scenario can be selected.

A target represents a condition or opportunity required for scheduling a model

step. Target requirements are usually environmental in nature (the visibility of a

celestial or terrestrial target, for instance). A step can be scheduled only when all

specified targets are available. An attitude represents a requirement of a step on the

spatial orientation (inclination) of the spacecraft. A step may also specify that it not

be scheduled when a specific target or orbital opportunity is available.

Sequencing Constraints

Sequencing constraints specify the models that are to precede and/or succeed a

particular model. A step or model may be confined to start/end within a specified

time relative to another step or model (sequencing delays). If more than one

performance is requested for the required model, the sequenced model can be

executed with any of the performances of the required model. Multiple performances
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canbe scheduledfollowing a performanceof the requiredmodel. Thus, a modelwith

predecessorscanstart assoonasone performanceof eachrequiredmodel is

complete;its earlieststart time is the maximumof thecompletiontime of the first

performanceof the predecessors.Note, however, that activities in a missiondo not

form a network as in project schedulingproblems.

Relational Constraints

A model step may specify that it be performed concurrently with a step of

some other model. Concurrency may be mandatory, necessary or desired. In the

case of mandatory concurrency, neither step (model) can be executed without the

other. That is, both steps should be scheduled together; otherwise, neither can be

scheduled. Selection of one model for scheduling forces selection of the other. For

necessary concurrency, if both cannot be scheduled together, the concurrent step (the

one requiring concurrency) is not scheduled while the required step is unaffected. If

concurrency is desired, a step may prefer to be executed with another model step.

The concurrent step should be scheduled with the required step, if possible.

However, if this is not possible, the concurrent model can still be scheduled.

Scheduling of a concurrent model (step) is deferred if it is selected before the

required model. Also, irrespective of the type of concurrence, it is generally

preferred that the two steps start together. A step or a model may also specify that it

should not be scheduled concurrently with some other step or model.



Resource Requirements

A step may use three types of resources, namely consumables, non-depletables

and equipment, and can be scheduled only when all specified resources are available.

Consumables are those resources whose availability is permanently decreased when

they are utilized (for example, energy, photographic film, etc.). Non-depletables are

those whose availability is decreased only for the interval of usage (for example,

power, crew time, etc.). When a step is scheduled, the availability of a non-

depletable resource is decreased by the amount of usage, which is replenished once

the step is complete. A step may also use some piece of equipment which is not

available to other models until the step is completed (a TV camera, for instance).

Resource carry-through enables resource usage to continue through the step delay to

the next step. Models must be scheduled such that the total resource usage, at any

instant, does not exceed the total availability.

Crew Requirements

Crew members may be required to perform, or (periodically) monitor model

steps. A step may require specific crew members or may enable a choice between

several persons. The latter flexibility in crew ordering can be used to balance crew

utilization to a certain extent. Crew balancing is performed on a per-performance

basis rather than on a per-step basis; if possible, the same members are utilized to

perform several related steps ("crew lock-in").
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Solution Approaches

The complexity of space mission scheduling problems requires the use of

diverse techniques to address different problems. Thus, within the same problem

domain, it is quite common to use a method that limits the search space over all

possible schedules, while another method is used to resolve resource assignment

conflicts (Thalman et al., 1991). Solution techniques designed to find optimal

solutions are generally unsuitable in mission scheduling problems due to their high

computational requirements. For instance, Sheskin (1988) developed a zero-one

integer programming formulation for scheduling experiments in the Space Station, and

solved an example problem consisting of two activities and ten time periods. The

computational requirements of such a model is bound to be prohibitive for realistic

instances. Since optimal schedules form a small subset of all possible schedules, it is

generally advisable to search for near-optimal schedules.

Many systems are available to NASA for scheduling space missions. Of these,

ESP is one of the most powerful and popular ones. It is a generic system, and has

been used for scheduling numerous Spacelab missions. It is also the host scheduler

for this research. The scheduling process used in ESP is outlined below.

The Scheduling Process of ESP

ESP selects an activity using dispatching rules, and constructs the schedule one

model performance at a time. The scheduling of a model depends on the selection
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order and the satisfaction of the model's constraints. In ESP, a multitude of activities

vie for limited resources. The selection order has a profound effect on schedule

quality since resources are assigned on a "first-come, first-served" basis. Once a

model is selected, the time periods available for the model are checked to determine

the time at which it can be scheduled with respect to the constraints. One

performance of the selected model is then placed on the timeline, and the resource

and crew availabilities are suitably adjusted. The process is repeated until all

performances of all models have been attempted (Jaap and Davis, 1988, 1989). The

quality of a timeline depends on the extent to which it accomplishes stated mission

goals. In general, a schedule that satisfies many different criteria is preferred over

another which fares well for only a few performance measures. ESP judges the

quality of a schedule using the schedule grade function which incorporates five

different criteria (Stacy and Jaap, 1988).

Schedule Grade =
(wlP + w2A + w3C + w4T + wsS)

100

Number of Performances Scheduled

where P =

k

Number of Performances Requested

Number of Activities Scheduled

Number of Activities Requested
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C

Crew Time Utilized

Crew Time Requested

T

Activity Operation Time

Minimum Activity Time Requested

S __

Science Value Scheduled

Science Value Requested

and wl, w2, w3, w4 and w 5 are user-specified weights for the various criteria. Science

value gives the scientific value of a step relative to the mission's expected value.

Selection Methods

Activities are generally grouped in terms of their discipline or experiment

nature. Various selection methods can be used within these groups such as (Mission

Planning Division, 1993): (1) fixed order selection, in which the user pre-specifies the

exact selection order (static), (2) random order selection, where each model

performance has an equal probability of selection, (3) maximize grade selection,

which selects a model that will cause the greatest increase in the schedule grade, (4)

most-constrained selection, in which the most time-constrained models in a fixed-

order group are attempted first, and (5) manual selection, in which the user

dynamically dictates the next model to be attempted.

Random selection is quite popular among system users. Grade-maximization

is a gradient (dynamic) selection method wherein the selection of a model depends on
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the current schedulequality andthe gradeof modelsavailablefor scheduling. As in

production scheduling and project scheduling, no rule has been found to be robust

under a variety of conditions (see Blackstone et al., 1982, Boctor, 1990, and

Maxwell, 1987). Several trial schedules can be generated by varying the selection

order of model groupings, and by changing the selection rule; the schedule that yields

the "best" value for the schedule grade function is chosen.

Loading Algorithm

ESP uses forward chaining, and depth-first search with backtracking to place

one performance of the selected model on the timeline without violating any constraint

(Stacy and Jaap, 1988). The scenario to be employed is determined by the selection

method, based on the scenario strategy and priority rating.

The loading algorithm first determines the specific times at which the

constraints stated by a model step are satisfied. The constraints are checked in a

depth-first fashion ("nested windows") until a low-level search window where the step

can be scheduled is found. If any constraint is violated, checking proceeds to the next

search window. If all windows are exhausted, the model step is failed. A model

performance is scheduled only when all steps have been successfully loaded. Once

scheduled, models cannot be shifted or unscheduled.

Front loading of models is preferred due to the requirement that models start

as soon as possible, unless specified otherwise. This serves to schedule as much
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scienceaspracticalearly in the missionwhich is a particularly importantobjective

dueto the possibility of a prematuremissiontermination,or otherunforeseenevent

(Bullington andJaap,1992). Also, front loadingresultsin the building of a semi-

activeschedulewhereinno job canbe performedearlierwithout altering the

sequence;Baker (1974)hasshownthat at leastone optimalscheduleis semi-active.

Maximizing step(activity) duration is preferredovermaximizingthe numberof

performancessincetheformer doesnot involve any increasein time lost due to setup

andstowage.

Temporal Decomposition

Problems associated with large systems are usually solved by decomposing the

system into connected or disconnected sub-systems. The complexity of a large

problem can be vastly reduced by decomposing it. The resource allocation problem

in a production system can, for instance, be split into independent dispatching

problems in the individual workcenters (Chryssolouris et al., 1991). Other types of

such non-temporal decomposition have been used frequently in scheduling problems

(see Yamamoto, 1977 and Chu et al., 1992).

Temporal decomposition involves breaking up the mission timeline into non-

overlapping segments, and identifying the models that are to be attempted within these

segments. Models should be assigned to segments such that they have adequate

opportunity for being scheduled, and such that their constraints and requirements can
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be satisfiedwhile scheduling. Sinceseveraltime choicesexist for a model, the

decompositionprocessshouldplaceanactivity at a goodtemporalposition so asto

enablethe schedulingof asmanymodelsaspossible. Oncesucha decompositionhas

beenobtained,the varioussegmentsarescheduledin an incrementalfashion.

Sadowskiand Jacobson(1978)haveshownthat anoptimalallocationof tasksin each

segmentdoesnot yield an optimaloverall solution.

Little work hasbeendoneregardingsegmentedschedulingof spacemissions,

with the possibleexceptionof the work by Machucaand Sadowski(1981), andthe

SPIKEsystemdevelopedfor Hubble SpaceTelescope(HST) scheduling(Miller et al.,

1988andJohnstonandAdorf, 1992).

Machucaand Sadowskidevelopeda schedulingsystemfor NASA's satellite

communicationsnetwork in which the problemwas treatedas a genericresource-

constrainedschedulingproblemwith time windowsandover-subscribedresources.

Sincetherewere no precedenceconstraintsin this problem, thetimeline wassplit into

segments.Two strategies,namelythe BASIC andthe MAX procedure,were tested.

The BASIC procedureusesa sequencingapproachin which jobs areattempted

to be scheduledin the order given by ranking rules. The MAX procedureutilizes

ranking rules and partial enumerationtechniquesto find the 'best' sequence.The

zero-oneintegerprogrammingformulation, for multi-project scheduling,developedby

Pritsker et al. (1969),wasadapted. Various job rankingsandsegmentdurationswere

16



testedbasedon the meritsof the sequencesthey produced;the MAX procedurewas

foundto be the superiorone.

A key distinctionbetweencommunicationsschedulingand spacemission

schedulingis the lackof sequencingand relationalconstraintsin the former. Also, a

partial enumerationapproachis likely to be impracticalfor missionschedulingdue to

the large numberof activities.

In the SPIKEschedulingsystem(Johnstonand Adorf, 1992), observationsthat

are to beperformedcontiguouslyare "clustered"togethersoasto limit the numberof

entities, thusreducingtheproblemsize. A "cluster" is the smallestassignableentity,

andis assignedto start during the time interval of a segment. Multiple clustersmay

be assignedto a segment,but a clustercanbecommittedto only onesegment.

Activities within a clusterarenot requiredto endwithin a segment.

"Suitability functions" wereusedto representthe level of satisfactionof the

constraintsof anactivity at a segment. Thus, thesedeterminethe desirability of

startingan activity at a segmentby providing evidencefor/againstscheduling

decisions. The satisfactionof hard constraintswasmeasuredusingconstraint

propagationtechniques,andthe hard constraintswere combinedwith the soft

requirementsusing evidentialreasoningtechniques.A clustercanbeassignedto a

segmentonly if all activitieswithin theclusterhavenon-zerosuitabilitiesat that

segment. Detailedschedulingis doneevery week,during which the clustersand

17



constraintsare fully expanded. The schedulequality is measuredby the "summed

suitability function."

Johnstonand Adorf (1992)presenteda zero-onemathematicalformulation for

HST scheduling. This modelwas transformedto a static, timetable-typeneural

network alongwith the aptbiasesandconnectionstrengths. A neuronrepresentsthe

allocationof a particular cluster (row) to a particular segment(column). The linear

equalityand inequalityconstraintsof the mathematicalformulationwere modeled

using "guardneurons"which destroythe symmetryof the model. Asymmetric

feedbacknetworks,asduly notedby the authors,havenot yet beenprovento be

asymptoticallystable. The networkcan, however,beusedwithout any training, and

attemptsto find the maximal independentsetof assignments.By controlling the

feedbackdynamicsof the network,both predictiveand reactiveschedulingcanbe

done. Severalalgorithmswere developedusingthe "suitability functions" framework.

Of these,the neuralencodingwas found to be thefastest,andpermitsthe most

exhaustiveexplorationof the solutionspace.

Miller andJohnston(1991)presentedseveralmethodsfor performing

segmentedscheduling. A "proceduralscheduler",which commitsclustersto

segmentsbasedon greedyalgorithms, is described. Thesealgorithmswere found to

scheduleclustersat timesof low suitability, thuscreatingpoor schedules.A modified

Hopfield neuralnetwork wasused, in which clusterswere assignedto segmentsupon

satisfyingthe constraints. The insightobtainedfrom the neuralnetwork model was
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usedto developa constraintsatisfactionformulationwhich was found to perform

better thanthe network formulation. Miller et al. (1988)remark that the "summed

suitability function" doesnot provide adequatediscriminationbetweenschedulessince

it neglectsthe effectsof diminishing resourceswithin segmentswhile schedulingthe

clusters.

In SPIKE, asnotedabove,temporaldecompositionis donein two stages:(1)

clusteringthe activities,and (2) assigningtheclustersto segments.Alternatively,

activities canbeassigneddirectly (i.e., in a singlestage)to the segments.This may

lead to a balancedassignment,andtherebya betterschedule,owing to the added

flexibility in assigningindividual activities, ratherthanclustersof activities. Besides

the contrastin the degreeof approximation,the SPIKEschedulingsystemand the

assignmentalgorithmgivenhere (seeChapterIII) aredistinct in terms of the solution

methodsusedand the schedulingarchitectureemployed.

HST is merelyan observatoryin spaceandthe modelsto be scheduledare

basicallytelescopicexperiments;this enablesobservationson similar targetsto be

groupedtogether. In a spacestation,however,observationis simply oneof the many

tasks,andthere is likely to be a greatdegreeof variety in the tasks. The numberand

typesof constraintsthat affectmodelsin a spacestationis boundto bemuchhigher

than thoseexperiencedin HST. The amountof parallelismexpectedin a space

station, for example,is muchmore thanthat encounteredin thetelescope.
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Segmentedschedulingcanbeperformed,in ESP,by specifyingthe

macrowindowsof a modelas segmentsin which it is to beattempted;provision is

availableto definethe numberof performancesthat are to be attemptedwithin these

macrowindows. It hasbeendeterminedby NASA that a spacestationmission

timeline shouldbe divided into week-longsegments.Given the sizeof the space

stationschedulingproblem,the decompositionprocessshouldhavelow computational

requirements,thuspermittingthe evaluationof manydifferent taskorderings;a

possibleslight degradationin schedulequality may bepermissiblein exchangefor

computationalsavings(BullingtonandJaap,1992).

In a segmentedschedulingscenario,there is likely to be a significant reduction

in the schedulingtime of ESPsince: (1) the numberof modelsthat competefor

selection,in a segment,is limited due to temporaldecomposition;this may leadto a

reductionin the selectiontime, and (2) the searchrequiredfor loading a model

performance,in a segmentedmission,is limited to be within the time lengthof a

segment;whereas,in a non-decomposedmission,ESPmay haveto searchthe entire

timeline before being able to load a model performance.
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CHAPTER III

MATHEMATICAL MODEL FOR TEMPORAL DECOMPOSITION

Pre-processing

Consider a space mission with i = 1, ..., M activities, where each activity, i,

has q = 1 ..... S_ steps, and has to be replicated N_ times (i.e., multiple

performances). Each step, q, of model i has a minimum and maximum step duration,

tmin_q and tmaxiq, respectively, and a minimum and maximum step delay, dmin_q and

dmaxiq, respectively, with the previous step of the model (when q = 1, the delays are

zero). Since the steps must be performed contiguously, model performances can be

thought of as being rendered in a single step; step-level modeling is likely to make the

decomposition tedious. The minimum and maximum performance durations of model

i are, respectively,

Si

Pmin_ = _ (tmin_q + dmin_q)

q=l

Pmaxi

Si

= E (tmax_q + dmax_q).

q=l

If several scenarios exist for a model, the one with the highest requirements or

maximum weight is chosen. The actual performance duration for model i, P_, is
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betweenPmin_andPmax_.The minimum andmaximumperformancedelaysfor

model i are givenby DmithandDmax_,respectively.

A missionhasa total of g = 1, ..., G crew members, and b = 1 ..... B

resources (renewable and non-renewable). Based on the minimum and maximum step

durations, each step, q, of model i requires NC_q crew members, each for {cminiq,

cmaxiq} unit hours. Therefore, model i requires NC_ crew members, where NC_ =

maXq {NCiq, 1 < q < S_}. Then, each performance of model i requires between

cminq and cmaxq unit hours of each of the NC_ crew members, where

Si

cmini = r. cminiq

q=l

Si

cmax i = _ cmaXiq.

q=l

Similarly, each step, q, of model i requires between rmir_qb and rmaxiqb unit hours of

resource type b. The minimum and maximum resource usages of a model

performance of model i are, respectively,

S,

rminm = E rminiq b

q=l

rmaxib

Si

= _ rmaxiq b,

q=l

for all i and b.
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Eachmodel i specifiesa setof crew membersCse_,wheren(Cset0> NC_ (i.e., crew

ordering is generally flexible). Crew usage also includes crew lock-in, and resource

usage also includes resource carry-through. The total resource and crew availability

through the length of the mission is _ unit hours, for all b, and Cg unit hours, for all

g (if all members are equally available, Cg = C, for all g), respectively. Only the

most constraining resources b need to be considered. The target, attitude, and

equipment requirements are not currently considered in the decomposition process.

In a segmented scheduling scenario, the mission is broken down into k = 1

.... , K non-overlapping segments of segment length, T (i.e., KT = Mission Length).

Assuming equal resource and crew availability within k, the total availability of crew

member g is Ck_ = Cg / K; likewise, the total availability of resource type b is IL,b =

Rb / K. (If the actual crew and resource availabilities within each segment can be

found, this approximation is not required). Crew over-subscription, a, is found over

the entire set of crew members since, due to crew flexibility in model requirements, it

is difficult to find the exact level for each member. The over-subscription of each

resource type b is given by t_b. These quantities are given by

M

N i rminib
i=l

oLb = , for resource type b
K

Rkb
k=l

and
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M

N i NCi cmina
i=l

G K

_ Ckg

g=l k=l

Using o_ and ab, the total resource and crew availability within a segment are

adjusted as per the level of over-subscription. Consequently, more models would be

assigned to segments than can actually be scheduled. The resource and crew

availabilities found are aggregate, and do not reflect the specific values of these

quantities at specific times. If Pmini > T for some i, that model must be split into

sub-models which must be constrained to be assigned to adjoining segments.

Mathematical Model for Assignment

Specifying the macrowindows of a model as segments in which the model is to

be attempted (i.e., temporal decomposition) is equivalent to assigning model

performances to timeline segments. The objective of temporal decomposition is to

allocate model performances to appropriate segments such that they have adequate

temporal opportunity for being scheduled; the assignment should enable the

scheduling of as many models as possible. The preference of model i for being

assigned to segment k is given by Oik , and w_ is its weight, or importance. The

relational, sequencing, and "soft" constraints are not included in this formulation. We

assume that these can be suitably incorporated in the preferences, Oik, through a
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preference-settingmodule. Sincea model may start in one of several possible

segments, the preference for assigning a model to a segment can be naturally

expressed in a fuzzy manner. The total preference for assigning (i.e., scheduling) a

model in a segment can be found by rating only one "attribute" at a time (see Badran,

1988 and Kacprzyk and Fedrizzi, 1988).

Each model i may have v = 1, ..., V time windows of the form {Wmir_v,

Wmaxiv}, within which N_ performances are to be scheduled. The number of

performances is generally over-requested, that is

V

Niv.

v=l

The minimum and maximum windows of i are Wmin_ = mi_{Wmir_v, for 1 < v <

V} and Wmax_ = maxv{Wmaxi_, for 1 < v < V}. These are transformed to L_ =

[Wmin_/T] and Ui = [Wmax_ / T]÷, which represent the first and last segment in

which i may be scheduled. (The notation "[X]" and "[X] +'' indicates that X is

rounded down, and up, respectively).

the entire mission, then L_ = 1 and U i

For example, if the time window of model i is

= K, where K is the last segment of the

mission. If i cannot be scheduled in segment k, say, due to intermittent windows,

then O_k = 0. Time windows are modeled only implicitly; only the segments for an

activity, and not the specific times, are modeled. The number of performances of i

that may be assigned to k is limited by the performance duration and minimum

performance delays. The maximum number of performances of model i that may be
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assignedto segmentk is givenby MAXa = [T / (Pmini + Dmini)]-. Also, the

performances of certain models are to be distributed over the timeline. For instance,

photographic experiments on planetary targets are often required to be evenly spaced

over the mission in order to enhance their scientific return.

Based upon the above notation, the following mathematical formulation for the

assignment problem has been developed:

Subject to:

M Uj

Maximize E _ w i Oik Xik (1)

i=l k=Li

Wi

Xik <--- Ni,

k=Li

for all i, (2)

Xik _ MAXik , for all i and for k = L_..... Ui, (3)

M

rib Xik _ 13[b Rkb,

i=1

for all k and b, (4)

M

E

i=l
ci Ci¢ Xik -- a Ckg, for all k and g, (5)

E Cig = NC_,

geCse_

for all i, (6)

Xi_ > 0, X_k is integer, and Cig E {0,1 }.
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The objective, (1), is to assignmodelperformancesto segmentsso asto

maximizethe total preferenceof the assignment;(2) statesthat, for eachmodel, the

requestednumberof performancesshouldbe assignedto the segmentswith respectto

the time window constraints,while (3) saysthat no more thana specifiedmaximum

numberof performancesof activity i shouldbe assignedto segmentk; (4) and (5)

statethat the total amountof resourceconsumptionandcrew utilization, respectively,

must not exceedthe total availability in a segmentfor thedifferent resourcesandcrew

members(therequiredamountof resourcesand crew time shouldbe allottedto each

performance);(6) saysthat only the requirednumberof crew membersshouldbe

usedby anactivity. The Xik's are integer(non-negative)decisionvariablesdenoting

the numberof performancesof model i assignedto segmentk. The C_g'sare zero-one

variablesspecifyingwhetheror not crew memberg wasutilized for activity i.
M

The number of Xik (decision) variables, Z; (U_ - L_ + 1), depends on the

i=l M

time window of models, and the number of C_g variables, r_ n(Cset3, depends on the
i=l

set of crew members, n(Cset3, specified by the models. The model requires a total
M

of [2M + _ (Ui - L_ + 1) + K(B + G)] constraints (excluding integrality and non-

i=l M K

negativity). Certain resource types b may be overlooked if r_ N_ rib _< _ Rkb. Only
i=l k=l

the most constraining resources need be considered. Likewise, if crew members are

not a constraining resource, then constraints (5) and (6) can be removed, which would

make the formulation more tractable. Since time is considered only implicitly, the

model can be readily extended to long missions. The formulation is not affected by
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the missionor segmentlengths,but ratherby the numberof segments.However,

(non-linear)integerprogrammingmodelsare generallydifficult to solve andtheir

practicaluseis limited dueto high computationalrequirements.Due to this

difficulty, heuristicmethodsthat providea "good" solution in a reasonableamountof

time are oftenemployed. In the following chapter,we presentone suchprocedure

for assigningmodelperformancesto segments.
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CHAPTERIV

HEURISTIC ASSIGNMENT PROCEDUREFORTEMPORAL DECOMPOSITION

Assignment Heuristic

A model having no predecessor is eligible for selection immediately. Also, a

model is eligible for selection if at least one performance of all of its predecessors has

been scheduled. These facts are quite obvious, and have been used widely in

scheduling problems that involve precedence constraints (e.g., see Kelley, 1963). In

the heuristic given below, one model is selected at a time from a set of eligible

models, E, and its performances are assigned to appropriate segments in a sequential

manner. The assignment heuristic is basically an approximation of a scheduling

process, and may lead to a balanced assignment owing to the flexibility in assigning

individual activities, rather than clusters of activities. Any concurrency and

sequencing requirements specified by the steps are viewed as mandatory restrictions

on the model as a whole. Accordingly, a model desiring concurrence is attempted in

the same segment as that of its required model, which may enable the steps to be

scheduled together. Any sequencing delays between models are to be considered only

while scheduling (i.e., by ESP).

Let ip and ic be the set of predecessors and concurrencies, respectively, of

model i, and i= be the subset of i_ that has already been assigned. Let ST_ and CT_

denote the start time and completion time, respectively, of the first performance of
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model i. A setof preferredsegments,PSi, is usedto indicatethe segments(i.e.,

times) at which model i prefersto be scheduled,and to skip unfit incrementswithin

its time window. If both concurrenciesand segmentpreferencesexist for a model,

the former aregiven priority. PT is a variablethat indicatesthe presenttime for the

selectedmodel. Nit_ is the minimumnumberof preferencesof i that canbe assigned

to the segment[PT / T] with respect to the resource, crew, and temporal constraints.

A_k is the number of performances of i that are actually assigned to segment k, and A_

is the total number of performances of model i assigned to all segments. The

unassigned model performances, UA_, are assigned "evenly" over the segments of the

model (this procedure is described in some detail in the next section).

Step 0.

Step 1.

Step 2.

Step 3.

Step 4.

Initialize. Ajk = 0, for all j, and for k = L i..... U i.

Find the set of eligible models, E.

E = {u: up = 01u = 1, ..., M} and

{u: A i > 0, for all j E Up[U = 1 ..... M}.

The select and assign process is repeated until all eligible models have been

attempted. If E = 0, END.

Select a model i using some selection rule, _-. i = j: minj_E 7rJ.

Find the "earliest" start time of i with regard to its time windows,

predecessors, concurrencies, and preferred segments. The earliest start time

(segment) of a model is the maximum of (a) the minimum performance time
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Step5.

Step6.

window, and (b) the maximumof thecompletiontime of the first

performanceof its predecessors,if any. If possible,the model is madeto

start in the samesegmentasthe first performanceof any concurrentmodel,

in order to provide thema chancefor beingperformedconcurrently.

Consequently,evenif the first performanceof the modelsarenot scheduled

together,concurrencymay still be met with someotherperformance.

STi.ip = maxu {CT. lu E ip}; STi.i_ = mir_ {STulu E ica}.

(If ip = 0, ST_._p = Wmin_; likewise, if i_a or ic = 0, STi.ic a = Wmin_).

PT = Wmin_; If STi.ip > PT, PT = ST_._p; If [ST_._ / T]- > [PT / T]-,

PT = [STi.i=/T]- × T.

If minkeps_ k > [PT / T]-, PT = k × T; Else, update PS_ to point to segment

k: k > [PT/T] + 1. Skip this sub-step ifPS_ = 0.

Model i is to be attempted serially over the segments until all of its

performances have been assigned, or until the maximum time window is

reached. Step 5 ensures that no model performance is assigned outside its

time window.

If PT _ U_ × T, UA_ = N i -Ai; Go to 1.

Find the minimum number of performances that may be assigned to segment

[PT / T], subject to the availability of sufficient duration, resources, and

crew time.

Nilf,T1 = min { Ni[r,/qT, Nilr,rlR, NilPTlC }, where
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Step7.

Step8.

Ni[P'lqT

Ni[r,-rlR

Niwrlc

= [([PT] + - PT) / (Pmil_ + Dmin_)]-,

= mirg [Rir, rlb / rminib],

= ming_cclvn [Ctvr]g / cminig],

and CC[PT] E Cset_ is the set of crew members who have been utilized

minimally in segment [PT / T]-; n(Cset0 > n(CC[PT]) = NC_.

If no performances can be assigned in [PT / T]-, try the next possible, or

next preferred, segment.

If N_trm < 1, PT = ([PT / T] + 1) x T, or, if PSi is not equal to 0,

then PT = PS_ x T; Go to 5.

Find mi[l,T], such that A_ < N_; the number of performances assigned must not

exceed MAXik. The resulting performances are relegated to segment

[PT / T]-, and the resource and crew availabilities are suitably updated.

Crew flexibility is exploited to engage the least-utilized members. The

actual start time and completion time of the first performance are noted;

these are used only as indicator variables in the assignment, and are

irrelevant while scheduling.

If m i = 0, ST i ---- PT and CT i = PT + pmini.

If N_rvn > MAX_k, N_trm = MAX_k.

([PT]--I) ([PT]--1)

If N i - _ A_k > N_rrm, then AiIr,Tl = Ni[t,aq; else, A_tvn = N_ - _; A_k.

k=Li k=Li
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Step9.

Rl_lb = RI_ b - Aiir,T1 × rmin_b, for all b,

CiPxlg = C[wr]g - Ai[vaq × cmin_, for all g E CC[pT].

If some performances are still unassigned, try the next (preferred) segment;

else, in the next step, determine if any new model of those previously

ineligible can now be released into the selection stage due to the previous

allocation.

([PT]--1)

If N_ - Z; A_k > 0, PT = ([PT / T]- + 1) × T, or, if PS_ is not equal to 0,

k=Li

then PT = PS_ × T; Go to 5; else, Go to 1.

Activity Selection Rules

The following four selection rules were used in the heuristic to select a model

i E Ewiththe :

(1) fewest number of requested performances, (Trnpj = Nj, for all j),

(2) shortest activity duration, (Tr_j = Nj (Pminj + Dminj), for all j),

(3) shortest time window, (rrtwj = Wmaxj - Wmir_, for all j),

(4) highest criticality, (Trtcj = (rrtwj - 7tadj) / 7rtw.j, for all j).

A fifth rule, rCr, was used to select i randomly. For all the rules, ties are resolved in

favor of the model that has the most number of successors. Several composite (bi-

level) selection rules may also be employed. For example, models can be grouped
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basedon 7r°por 7rtw,anda secondrule (e.g., useof similar resources)could be

appliedto discernbetweenmodelsin the samegroup.

A sixth rule, 7re(the "even" heuristic), assignsthe performancesof model i

"evenly" over thepossiblesegments,L i to U i, ignoring all other constraints. The

number of performances, A_R, of model i assigned to segment k depends only upon its

time window, {Wmin_, Wmax_}. If N_ = 1, then this single performance is assigned

to the first (preferred) segment of i. If N i < (U i - L_ + 1), the performances are

assigned to the preferred segments, and earlier segments. In general, with this

"even" heuristic, the performances of model i are distributed as follows:

NiL i = [{(L i q- 1)T - Wmini} / 71"tw.iX Ni] + , for all i.

If NiL i --> N i, AlL i = Ni; Else, miLi ----- NiL i, for all i.

For i = 1, ..., M

For k = (Li +1), ..., (Ui - 1)

Nik = [T / _tw,i X Ni] +

k-1 k-1

If Nik --> N i - _ Aiw , Aik = N i - _ Aiw; Else, Aik = Nik

w=L i w=L i

Next k

Next i

Niui = [(UjT - Wmaxj) / "/l'tw.i X Ni] +, for all i.
Ui-1 Ui-1

If Niu i _ N i - _ Aiw , miu i = N i - _ miw; Else, Aiu i

w =L i w---L i

= Niui, for all i.
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The following factorsresult in a loosely-linkeddecomposition,and, thus, deter

the independent (parallel) scheduling of the time increments:

• Model performances must slide over the time continuum. Thus, it is

imperative to schedule certain performances in a split fashion (partially). In

fact, models whose performance duration are greater than the segment length

(i.e., Pmin_ > T) must be scheduled in a split fashion. When splitting, the

remaining duration (i.e., unloaded steps) must be carried over to the

subsequent segment(s). The capability to schedule a model performance

partially is currently not available in ESP.

The required delay between performances or steps, and any sequencing delays

between models, should be satisfied. The scheduler should consider such

delays with respect to models assigned in preceding segments.

The scheduled duration is likely to be higher than the minimum duration. In

fact, ESP tries to maximize step durations, thus maximizing performance

duration. Model performances not scheduled in the segment to which they

were originally assigned may be schedulable in others. Thus, after scheduling

a segment, the unscheduled performances must be moved to the next possible

increment. Some model performances may not be scheduled at all due to

resource over-subscription.
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CHAPTER V

EXPERIMENTAL RESULTS

Introduction

In this chapter, results of experimentation on the use of segmented scheduling

and temporal decomposition are reported. Based on whether the mission is scheduled

in a segmented (SS) or non-segmented (NS) manner, and based on whether the

activities are temporally decomposed (TD) or non-decomposed (ND), each mission

can be scheduled in four different ways, namely ND/NS, ND/SS, TD/NS, and

TD/SS.

NS corresponds to scheduling a mission fully, rather than in separate

segments. ND means that macrowindows are not used to divide the mission into time

segments for the purposes of assigning model performances. ND/NS is the way

NASA generally does mission scheduling. In this research, we are primarily

concerned with the effectiveness of ND/SS and TD/SS schedules. In the former, we

examine the effects of scheduling missions in a segmented manner only; in the latter,

we investigate the usefulness of both restricting activities within segments (TD) and

scheduling the segments incrementally (SS). TD/NS is examined basically to gain

some understanding as to how good we can do by restricting (only) the activities, and

still fully scheduling the mission. TD/NS can be viewed as a sort of loose upper

bound on the performance of TD/SS.
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Activity datafor two hypotheticalmissionswasmadeavailablefor usein this

study. Thesemissionsincludea smallSpaceStationmissionwith a 48-dayduration

and an 8-daySpacelabmission. For the ND/SSand TD/SSschedules,bothmissions

are split into eight segments.For the SpaceStation, the segmentlength, T, equals

six days, while T equals1day for the Spacelabmission. Resultsfor thesemissions

arepresentedin Tables1 and2 below. For all theseschedules,the weighting factors

in ESP's schedulegradefunction wereset equalto one.

In the tables, "GM" is the gradeof the scheduleobtainedusingthe grade

maximizationrule. "RB" is the schedulethat hadthe bestgradevalueamongfive

randomly-generatedschedules.For eachmission, 15different sequencesof model

groupswere first testedusingND/NS (GM). In all the resultsgiven below (for both

missions),the sequencethat gavethe bestGM valuewasused. Typically, there is

only a slight difference(one or two gradepoints)betweenGM andRB, and GM takes

much lesstime. Macrowindowswere not definedfor modelsfor which Pmir_> T

and, sinceESPdoesnot havethecapability of schedulingperformancespartially over

the segments,thesewere not scheduledat all in the ND/SS, TD/NS, and TD/SS

schedules.

In Tables1 and 2, I' is the gradevalue, andTP andTM denotethe total

numberof performancesand models,respectively,which were scheduled. TC and

TA denote,respectively,the crew time andexposure/activitytime scheduled(in

hours). The last columnis theCPU time (in seconds)takenby ESPfor scheduling
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the missionon a VAXstation 4000Model 60. "Rule" denotesthe selectionrule used

for temporaldecomposition. The assignmentand "even" heuristicwere codedin "C",

and the CPU timestaken(in seconds)on a SUN SPARCstation1+ to decomposethe

SpaceStationand Spacelabmissionsaredenotedby "CPU'" in the "Rule" column.

The first two rows in thetablesgive the detailsof the timeline that is importedbefore

beginningeachschedulingsession. This timeline consistsof thecrew andsystem

operationswhich arehard-scheduledby NASA (e.g., crew sleepschedules).The next

row givesthe total missionrequest.

Whenusingthe assignmentheuristic, theunassignedperformances,UA_,are

allocatedevenlyover the model's segments.If UA_= 1, this loneperformanceis

assignedto the first (preferred)segment. Evenallocationwould makethe

assignmentsfrom the different rules (via the heuristic)be fairly similar. This is

reflectedin the TD/SS gradesof both missions,which are nearly the same,

irrespectiveof the rule employed.

Space Station Mission Results

Results for the Space Station mission are given in Table 1. By comparing

ND/NS (NASA's general scheduling procedure) with TD/NS, we see that we lose

about two grade points by defining the macrowindows on models (i.e., "TD") - fewer

performances are scheduled in the TD/NS schedules. While the CPU times for

ND/SS and TD/SS schedules are quite low, their performance is fairly poor when
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Table 1 - Resultsfor SpaceStationMission

Rule Import Request
(CPU') Import TL

Mission Request

,,$rr

(O.3)

_tc

(o.3)

"/l'ad

(0.2)

71"np

(0.3)

P TP TM

200 40

98.8 193 40

1387 83

ND/NS GM 95.5 1292 81

RB 96.3 1313 82

ND/SS GM 84.4 1282 71

RB 84.6 1303 71

TD/NS GM 93.7 1265 79

RB 94.4 1276 80

TD/SS GM 82.7 1256 69

RB 82.7 1270 69

TD/NS GM 93.4 1240 79

RB 93.7 1243 80

TD/SS GM 82.6 1244 70

RB 82.3 1245 70

TD/NS GM 93.7 1263 79

RB 94.5 1268 81

TD/SS GM 83.4 1258 70

RB 83.3 1267 70

TD/NS GM 92.1 1230 79

RB 93.0 1236 81

TD/SS GM 81.7 1221 70

RB 81.5 1231 70

TD/NS GM 93.8 1253 80

RB 93.8 1268 80

TD/SS GM 82.8 1243 70

RB 82.3 1257 69

TD/NS GM 93.5 1255 79

RB 94.3 1282 80

TD/SS GM 83.3 1249 70

RB 83.6 1278 70

TC TA CPU

7635 3938

7464 3955

7903 20752 -

7660

7662

7654

7656

7652

7636

7637

7626

7601

7603

7596

7590

7636

7635

7640

7633

7613

7615

7608

7603

7621

7626

7616

7611

7657

7652

7646

7654

19972

20145

13646

13657

19727

19897

13553

13500

19944

19888

13593

13522

19821

19945

13663

13644

19085

19235

12916

12901

19800

19726

13446

13442

19644

19783

13649

13659

599

872

320

971

832

1073

266

444

633

960

222

647

540

861

173

651

736

937

199

569

757

934

231

613

495

722

236

542
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comparedwith that of ND/NS (the differencein gradeis over ten points). The CPU

time differences may be much more significant for very long missions.

The TD/SS schedules take much less time for all the cases, and this difference

would be significant for long missions. The primary difference between TD/NS and

TD/SS for almost all the rules is that some activities having a high activity (exposure)

time do not get scheduled using TD/SS. These are probably the activities whose

Pmin_ > T. Also, ND/SS is only slightly better than the TD/SS's. But the TD/SS's

take much less time than ND/SS. For long missions, using TD might be helpful

because of this fact.

It appears that the six assignment rules can be divided into three groups with

respect to their performance for this problem. The _tw (i.e., shortest time window)

and 7re (i.e., "even" decomposition) rules appear to perform best for the TD/SS cases.

The 7r,p (i.e., fewest number of requested performances), _',c (i.e., highest criticality),

and 7rr (i.e., random) rules appear to perform equivalently to _rtw and _'e for the

TD/NS cases, but slightly worse for TD/SS. Finally, the 7tad (i.e., shortest activity

duration) rule appears to be the worst rule for both TD/SS and TD/NS.

Spacelab Mission Results

Results for the Spacelab mission are given in Table 2. For this mission, there

is very little difference between ND/NS and ND/SS. Also, none of the TD/NS or

TD/SS cases match the ND/SS value. So, once again, doing segmented scheduling
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Table2 - Resultsfor SpacelabMission

1"

Rule Import Request -
(CPU') Import TL 99.0

Mission Request -

(0.4)

7rtw

(0.4)

71"ad

(0.5)

ND/NS GM

RB

ND/SS GM

RB

TD/NS GM

RB

TD/SS GM

RB

TD/NS GM

RB

TD/SS GM

RB

TD/NS GM

RB

TD/SS GM

RB

TD/NS GM

RB

TD/SS GM

RB

TD/NS GM

RB

TD/SS GM

RB

TD/NS GM

RB

TD/SS GM

RB

TP TM

771 160

392 160

991 173

TC TA CPU

760 2664 -

840 3573 -

772 2708 -

110.4 764 173 1015

110.5 768 173 1014

110.3 767 172 1017

110.2 769 172 1012

104.6 715 171 876

104.6 715 171 876

105.0 733 171 874

105.1 734 171 875

104.9

104.9

104.9

104.9

105.2

105.3

105.2

105.2

104.7

104.7

104.4

104.5

104.5

104.6

104.5

104.6

721

721

721

721

721

722

721

721

716

716

712

713

713

714

713

714

736

737

736

736

171

171

171

171

171

171

171

171

171

171

171

171

171

171

171

171

171

171

171

171

105.3

105.4

105.3

105.3

881

88O

881

88O

892

894

892

891

876

875

873

874

874

876

876

876

876

876

876

876

3752

3752

3750

3749

3702

3702

3712

3714

3702

3702

3701

3701

3707

3709

3706

3705

3704

3704

3702

3704

3704

3704

3702

3704

3710

3713

3710

3711

311

479

106

759

122

253

136

576

150

182

143

545

139

179

164

460

166

236

153

521

144

193

157

574

158

221

166

476
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alone(i.e., without temporaldecomposition)seemsto bea goodoption.

Interestingly,there is very little differencebetweenTD/NS and TD/SS for most of

the rules, exceptfor theRandomrule, wheresomeextraperformancesare scheduled

for TD/SS. It is not clear why noneof the TD/NS casesareasgood asND/SS.

With regardto TD, the 7rtwand 7rerules againappearto performbest.

For this mission, thereseemsto beno real advantagein usingTD in terms of

the schedulingtime sinceND/SS (GM) actually takeslesstime than the TD/SS's.

Also, comparingtheCPU timesof TD/NS andTD/SSshowsthat the former actually

takeslesstime, eventhoughthe missionis scheduledcompletely. In fact, the ND/NS

andND/SS yield muchbettergradeseventhoughtheir CPU timesare only slightly

longer. However, it shouldbenotedthat this mission is probably not long enoughto

serveasa goodtest for segmentedschedulinganddecomposition. Most of its

activities arequite short, also. To adequatelycomparethe effectivenessof ND/SS

with TD/SS, we may needto havefairly long missionssothat the resultscanbe

extrapolatedto durationsexpectedin SpaceStationmissions.

General Comments

Models not scheduled in a segment were not transferred to the next possible

segment, since such a mechanism is not currently available. The schedule grades

obtained by way of decomposition can be improved by scheduling certain models

partially within the segments, and by transferring unscheduled performances to the
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next possiblesegment. Thelack of a long-durationtest casemakesit difficult to

fairly evaluatethemethods. Further experimentation is needed in order to make more

general statements about the usefulness of the proposed methods. However, it should

be noted that the 7rtw and 7rc rules, and the ND/SS method, are simple, realistic, and

appear to work relatively well.

The Space Station mission has little concurrency, activity sequencing

requirements, or energy requirements. It does, however, have some long activities.

On the other hand, the Spacelab mission has a great deal of sequencing, concurrency,

and energy requirements, but with fewer long models. Realistic mission scheduling

problems tend to involve many activities, with multiple objectives and numerous

constraints. Knowledge of the critical characteristics for a particular mission should

be very helpful in identifying appropriate selection rules and decomposition methods.

There would probably be some advantages in categorizing the characteristics of a

mission, at least in some aggregate sense, since this should provide some insight into

the likely usefulness of segmented scheduling and decomposition for that particular

mission. Differences in mission characteristics are likely to lead to substantial

differences in the quality of schedules produced by the different methods.

There are several possible means of handling very long activities (i.e., those

with Pmini > T). They could be split into sub-models (or steps) which have

sequencing constraints between them so that the sub-models are scheduled

contiguously. Alternatively, these activities could be partially scheduled, with the

43



remaining processing time carried over into the next time segment. However, if these

activities have intermittent time windows, the partial scheduling approach may

become quite complicated. It could be possible to use the step delays and

performance delays to account for intermittent time windows. However, a

representation scheme which does not involve such activity splitting would be much

more efficient and desirable, given that the performance duration of many models in a

space station mission are expected to last as long as several weeks (Stacy and Jaap,

1988).
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CHAPTERVI

SUGGESTIONSFOR FUTURE RESEARCH*

General Comments

Both ESP and the decomposition algorithm employ the select and assign

framework. ESP's loading algorithm attempts to schedule one model performance at

a time. The assignment algorithm, however, attempts to assign all model

performances to suitable segments sequentially, so as to preserve the continuity of

placing (scheduling) model performances over the time segments. Clearly, the idea

behind the heuristics is quite simple. It remains to be seen how effectively more

sophisticated procedures may perform in temporally decomposing the activities. If

activities in a mission are homogeneous, there must be some advantage in attempting

clustering-based methods for decomposition. However, in general, there is no

obvious way to cluster the activities due to the variety of different activity types

common in space missions.

An alternative strategy would be to attempt model performances in only one

segment at a time. Assignment progresses by filling the segments sequentially, rather

than assigning a model serially. If no model can be assigned to a segment, allocation

* Venkata R. Neppalli served as a co-author for this chapter.
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proceedsto the nextsegment. The time window andtime criticality rules canbe

implementedin a dynamicfashionwhereinonly the activesegmentsare considered

while finding the time availablefor a model. Resource-basedselectionrules canbe

employed(for instance,"selectthe model that will maximizeresourceutilization if

scheduled"). Specialconsiderationmay be requiredto accountfor the delaybetween

performances. Model performancesshouldbe assignedin a global sensesincean

optimal assignmentin the individual segmentsdoesnot leadto an optimal overall

solution (SadowskiandJacobson,1978). If a global assignmentstrategycanbe

identified to perform decompositionsof this kind, theassignmentprocesscan focuson

allotting the mostsuitablemodelsto a given segmentrather thanhaving to allocate

models far into the future.

While performing segmentedscheduling,it may benecessaryto usedifferent

schedulingrules in the varioussegments.A proficient schedulermaybe ableto

identify the most likely setof rulesthat might yield a goodschedule. Also,

adaptivelyswitchingbetweena setof rulesduring the schedulingprocessmay be

employed;this approachhasyieldedbetter resultsthanusing a singledispatching

rule, in a productionschedulingenvironment(for instance,seeChandraand

Talavage,1991). Inductivelearningtechniques(suchas GeneticAlgorithms, or ID3)

canbeusedto categorizeproblemsituationsandto identify effectiverules for these

situationsbasedon their performance. Sucha switchingmechanismwill also bevery
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useful in theassignment(decomposition)processsinceschedulequality depends

heavily on the order of selection of tasks.

The evaluation function for the decomposition process should judge if the

scientific and operational requirements can be met by a given assignment, while

scheduling. A fuzzy preference-setting module or a method similar to the "suitability

function" scheme used in SPIKE may be necessary. A suitable strategy while

performing segmented scheduling would be to identify good partial schedules, in the

early segments, which may serve to yield reasonably "good" timelines. Evaluation of

the quality of a partial schedule is a key issue as this may enable an efficient

distinction between the various assignment configurations without actually scheduling

them completely. However, this may be intractable due to resource assignment

conflicts, resource over-subscription, stochasticity, etc. The schedule grade function

only measures the aggregate quality of a schedule, and does not consider the

priority/importance of activities, the extent to which important constraints are

satisfied, etc. In this regard, it might be useful to have two grade functions - an

aggregate one to distinguish between the poor and good schedules, and another to be

used in evaluating schedules with good aggregate grade values.

Models whose performance duration is greater than the time length of a

segment can be divided into sub-models. However, a representation scheme which

does not involve such splitting would be more efficient and desirable given that the

47



performancedurationof (many)modelsin a SpaceStationmission is expectedto be

severalweeks.

Reschedulingandschedulerepair are likely to be importanttasksasschedule

deviationsin the earlier segmentsmay causea compounding("ripple") effect in the

subsequentsegments,thuscomplicatingthe schedulingproblem. In sucha situation,

it would be necessaryto preservethetemporalpositionof certain high priority

activities which maybe critical to the mission'ssuccess.Schedulerevisionmust

focus on preservingsuchactivitiesat the expenseof low priority activities.

Possible Use of Artificial Neural Networks

In view of the inherent complexity of space mission scheduling, decomposition

is viable and important. The preliminary results presented herein show promise with

respect to temporal decomposition, but are disappointing with respect to segmented

scheduling. Several factors, such as the complexity and size of the problem, selection

bias, and so on, may have contributed to these results. At any rate, it appears that

more sophisticated methods for temporal decomposition and segmented scheduling

should be investigated. Even though dispatching rules such as those used in this study

provide simple means of accomplishing activity selection, more sophisticated

approaches may handle the problem more effectively.

Approaches which use adaptive learning to exploit the problem structure may

be considered to extend the present solution framework. We consider neural
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networksasa promising technique,andproposethefollowing framework which may

provideguidancefor evolving moresophisticatedapproachesfor temporal

decompositionwith the capabilitiesof adaptivityandlearning. In the proposed

approach,neuralnetworksmay be incorporatedasa componentfor assessingand

learningthe schedulequality andcharacteristics. Theproposedapproachmay provide

a betteralternativefor doing temporaldecompositionwithout muchdegradationin

schedulequality ascomparedto themethodscurrently in use.

Neural networksmodel the humannervoussystemand havebeensuccessfully

appliedto severalclassificationandclusteringproblemswhich are ascomplicatedas

natural languageprocessingproblems. The suitability of neural networkscanbe

justified by their speedandability to learntheproblemcharacteristicsin an

unsupervisedmanner.

Severalfactorsinfluencetheefficiency of decomposition,and in an ideal case

the approachshouldbe ableto decomposetheproblem into "disjoint" sub-problems.

However, in manyproblemsthis may not possible. In order to deal with such

problems,which result in inter-connectedinter-dependentsub-problems,an

approximatedecompositionmustbe used. Also, decomposabilityof the problem,

combinedwith the optimality criteria, will affect the performanceof the

decompositionapproachin termsof efficiency andfeasibility of the final schedule. In

the proposedapproachusingneural networks,an iterative decompositionof the

timeline canbeconsidered,and a feed-forwardneural networkcanbeusedto
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adaptivelyclassify the activitiesinto segmentsin orderto achievea quality schedule.

In otherwords, the proposedapproachinvestigatesthe meansof replacingthe

dispatchingruleswith a neuralnetwork, hencerelieving the burdenof understanding

andoptimizing the bias in the selection methods.

In this approach, the problem segments are iteratively loaded with the

activities. At the present time, the facility of using an external program to submit the

activities and run the ESP is unavailable. Therefore, instead of actually scheduling

the activities in each segment, an approximation of the actual scheduling is used to

estimate the performance of the network. Due to the iterative loading of activities in

each segment, the approach considers sequencing as well as relational constraints.

In the proposed approach, each performance of an activity will be considered

as an entity and the problem consists of forming a dynamic and iterative classification

network which will be used to evolve an approximate schedule by classifying the

entities of the problem. The network basically consists of two sets of input nodes.

The first set will be used to input the attributes of the segment and the second set will

be used to input the attributes of the activities.

As mentioned above, we assume that the timeline is decomposed into suitable

segments. Segments are then considered one at a time. From the basic set of eligible

activities, each activity is fed into the network to decide whether the activity belongs

to the segment or not. Hence, the output from the network, from a single output

node or a set of output nodes, is used to determine whether the activity belongs to the
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presentsegmentor not. Oncean activity is assignedto the presentsegment,the

attributesof the segmentarechangedby consideringthe consumptionof resourcesby

the assignedactivity. Hence,beforeloadingthe nextactivity, the attributesof the

segmentareupdated. This implies that thenetwork evaluatesthe suitability of the

presentactivity to the current segment. In other words, the approachbasically forces

the network to form clustersin eachsegment.

After finding the setof activities which areassignedto the current segment,

the procedurecontinuesto the next segment,and soon. After completingall the

segments,an approximateloadingalgorithm is usedto schedulethe activities in order

to empirically estimatethe grade. It shouldbe notedthat thegradeestimationof a

scheduleis anapproximationand is expectedto reflect the actualgrade. Using this

measure,the feed-forwardneural networkadjustsits weight in order to enhanceits

performancemeasure. The procedureis repeateduntil a desiredperformancelevel is

achieved.

The proposed framework employs a structured approach and provides a means

of iterative decomposition. The performance of the approach depends on several

factors such as (i) defining the attributes of an activity, (ii) defining the attributes of a

segment, (iii) the procedure for updating the attributes of a segment, (iv) the

procedure for approximating and evaluating the schedule, and (v) the architecture and

type of the network.
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A neuralnetwork approachto the problemoffers severalpotentialadvantages.

Theseinclude flexibility in incorporatinguser-definedselectionbias, the provision of

a meansof analyzingandestimatingthe importantattributesof activities and segments

(andtherebyderiving a goodschedule),the offline natureof the procedure,andthe

easewith which the methodcanbeparallelized.

Obviously, severalimportantissuesmustbe resolvedin order to implementthe

proposedneural network framework. Also, severalpossiblemeansof implementing

the framework needto be investigatedto determinethe bestdesignof suchan

approach. Two possibleimplementationapproachesinclude (i) usinga parallel

network architectureand assigningan individual networkto eachsegment,with all the

individual networksconnectedin parallel, and(ii) extendingto a paralleldistributed

network in order to processall the segmentssimultaneously.
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CHAPTER VII

CONCLUSIONS

In the courseof conductingthis research,a thoroughreview of the literature

pertaining to space mission scheduling problems has been conducted. The unique

features of such problems have been highlighted. The need for segmenting long-

duration problems for purposes of activity assignment and detailed scheduling (i.e.,

"temporal decomposition" and "segmented scheduling", respectively) has been

documented. The problems inherent in attempts to perform temporal decomposition

and segmented scheduling have been discussed. A non-linear, zero-one integer

programming formulation has been presented as one means of defining the nature of

the temporal decomposition problem.

Due to the computational complexity of the temporal decomposition problem, a

heuristic assignment framework is presented, and implemented using several different

simple activity selection rules. All combinations of segmented vs. non-segmented,

and decomposed vs. non-decomposed techniques were tested using data from one

sample Space Station mission and one sample Spacelab mission. These preliminary

results indicate that (i) using segmented scheduling, rather than non-segmented

scheduling, may or may not result in a degradation in the quality of the schedule,

depending on the characteristics of the mission involved, (ii) the relative performance

of decomposition vs. non-decomposition also appears to be mission-dependent, (iii)
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two of the activity selectionrules usedwithin the heuristicappearedto perform best

acrossall experimentalconditions,namely,the selectionof activities with the shortest

time window first (i.e., "Trtw"),andtheassignmentof performancesof a model evenly

acrossits possiblesegments(i.e., "Tre").

As is oftenthe casewith preliminary research,numerousquestionsremainto

bestudied. The resultsof the experimentalanalysisclearly indicatethe needfor

meansof defining andclassifyingthe characteristicsof a specificmission, and

understandinghow thosecharacteristicsaffect the quality of schedulesproducedby

the useof temporaldecompositionand/or segmentedscheduling. An offline learning

technique,suchasneuralnetworks,maybeuseful in classifyingmissionsfor this

purpose. The useof clusteringapproaches,in general,for this type of problem

deservesfurther attention. Theuseof adaptiveselectionrules shouldalsobe studied,

as well as meansfor identifying "good" partial schedulesasthe schedulesare being

developed. Finally, the issuesof reschedulingandschedulerepair are suggestedas

critical areasof future researchon theplanningof long-durationmissions.
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